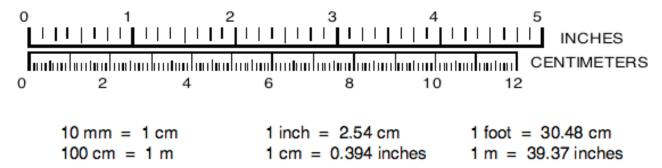
PRACTICAL PERCEPTION

Downloaded from http://www.practicalperception.org

Basic measurement issues


Author: Dr. Donald H. Mershon

Last updated: 2014 May 14

Category: Talking About Subcategory: Basic Measures

Summary: A discussion of basic measurement units, common to the study of perception, including log and linear scales.

For scientific work, the use of the metric system of measurement is generally preferred to the English system. Units commonly seen in perception research are the millimeter (mm), the centimeter (cm), and the meter (m). A small comparison scale is shown below, along with some equivalents. (Note that although the relative lengths of these scales should be correct, their absolute lengths depend heavily on your particular video display.)

The wavelength of light is also expressed in metric units, either millimicrons ($m\mu$) or nanometers (nm), where 1 $m\mu$ = 1 nm = 0.0000001 cm. Sometimes, one sees a unit known as the Ångström (or Å), where 1 Å = 0.1 nm. The major portion of visible light thus falls between 400-700 nm (i.e., between 4000-7000 Å) in wavelength.

Prefixes to indicate overall scale

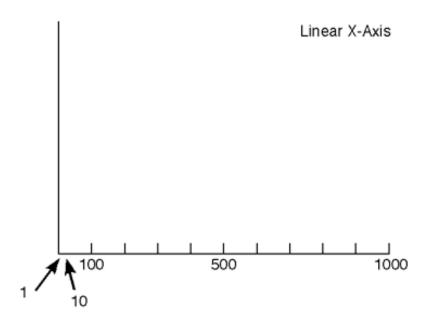
It is useful to know the basic prefixes that can indicate the overall scale of measurements. According to the International System of Measurement (aka the SI

system), for any unit (e.g., a second, a meter), the following modifiers apply as shown:

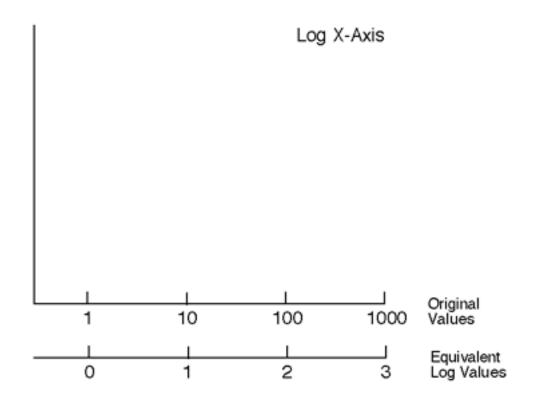
```
the unit x 103
kilo- (k)
1 kilosecond (ks) = 1000 seconds
1 kilometer (km) = 1000 meters
          e.g., speed of sound (in air) \approx 0.34 km/s (depending on several factors)
An important unofficial unit of measurement: centimeter = .01 meter
milli- (m)
             the unit x 10-3
1 millisecond (ms) = .001 s
          e.g., limit of Bloch's Law ≈ 100 ms
1 millimeter (mm) = .001 \text{ m}
          e.g., typical image sizes on retina would be expressed in mm
micro- (µ) the unit x 10-6
1 microsecond (\mus) = .000001 second = .001 ms
          e.g., binaural delay for a distant sound at 90° (direct to one side) \approx 650 \,\mu s
1 micrometer (\mum) = .000001 meter = .001 mm
             the unit x 1-9
nano- (n)
1 nanosecond (ns) = .000000001 second
1 nanometer (nm) = .000000001 meter
```

Logarithmic Scales

Sensory systems are often capable of handling a very wide range of physical intensities. In order to describe the operation of such systems in an understandable and convenient manner, logarithmic scales are frequently employed in place of linear ones. Although other forms of logarithmic scales exist, the following discussion will consider only logarithms to the base 10, since these are in most common use.


Put simply in words, a logarithm to the base 10, of any number N, is that exponent to which one must raise 10, in order to produce the original number. If we use x to represent the value of the logarithm, then the following relationships are true:

Note that the number N increases by a factor of 10-times for each increase of 1 log step.


Thus,
$$10^1 = 10$$
 $10^2 = 100$ $10^3 = 1000$ and so on.

The following graphs demonstrate some of the differences between a linear plot and a log plot. (Double use of the terms "linear" or "log" would indicate that both axes on a particular graph involve the same type of scale, as in a log-log graph.)

A Linear Plot provides coverage of the complete range of values, but may make it difficult to observe effects at the lower end of the range. Equal steps anywhere on a linear axis represent equal linear change; that is, a ten-unit difference involves the same separation, regardless of where the two values are located on the axis).

A Log Plot gives more visibility to small effects, if they occur at the lower end of the range. Log Plots can have axes that reflect the original values, or can be numbered in a way that indicates the equivalent log values. In either case, the spacing is typically logarithmic (i.e., equal steps on an axis represent equal proportional changes).

© Dr. Donald H. Mershon, 2015 All Rights Reserved.

We encourage sharing this content. Our goals include answering questions about, and increasing awareness of, the study of perception. These goals will be furthered if you connect, link to and/or pass on this content.

You may share/quote/disseminate this website in whole or in its component parts in any way you see fit, with the following restrictions:

- P Any commercial use of this content is strictly prohibited, without express written consent of Dr. Donald H. Mershon.
- P Attribution for unaltered content must be made to the content's author. Although most articles will be attributable to Dr. Donald H. Mershon, please check an article's header to note other authors or items having joint authorship.
- **P** Content may be modified or adapted for any educational, non-commercial use so long as such changes are properly identified (i.e., "adapted or modified from practical perception.org © Dr. Donald H. Mershon ").
- P Use of images with separately identified source(s) should credit such sources.
- **qp** Opinions or viewpoints expressed on the practical perception.org website must not be altered in any way that changes the intent of the original author(s).