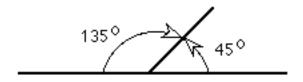
PRACTICAL PERCEPTION

Downloaded from http://www.practicalperception.org

When do we need angular measures?

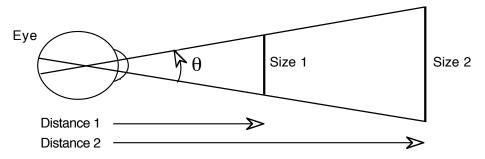

Author: Dr. Donald H. Mershon Last Modified: 2015 Feb 15

Category: Talking About

Subcategory: Basic Measures

Summary: Angular measures are frequently used to describe visual stimuli. Such measures may be as simple as describing the shape of a rectangle in terms of having four right-angles. One can, however, also use angular values in a different way to describe size. It is, for example, both common and useful to measure the "retinal or angular size" of a visual stimulus in a manner that simultaneously takes into account both the physical size and the physical distance of the target.

The use of *angular* measures is frequently required to describe visual stimuli. This use may be as simple as describing the angles of a square or rectangle as being right-angles or indicating the orientation of a line, with respect to the horizontal:

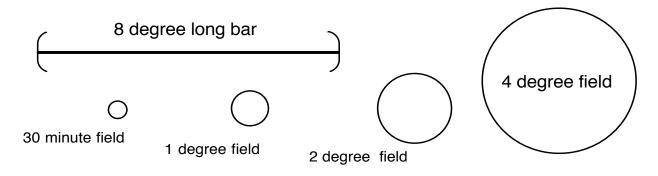


In using angular measurements, 1 degree is said to contain 60 minutes and each minute contains 60 seconds. Another measure of angular extent is the radian, where 1 rad = 57.29578 degrees.

One can, however, also use angular measurements in a less common manner, for describing the size of visual stimuli. Consider the diagram below that shows an eye, two alternative objects at which the eye might look, and some *lines-of-sight* between the eye and the two ends of the objects. For visual perception, the crucial stimulus is often the pattern of light as it falls on the eye.

Although one might describe that pattern by indicating both the size and distance of each object of interest, it is often more convenient to give an object's *angular size* (as

symbolized by the Greek letter theta --- θ). This measurement is also called the Visual Angle and is expressed in values such as degrees, minutes and/or seconds (see above). Any linear dimension of a visual stimulus (height, width, etc.) may be expressed in these angular terms, relative to the eye or some other observation point. Note below that size 1 at distance 1 and size 2 at distance 2 produce equal θ .


For situations in which **S** (size) is small, relative to **D** (distance), then:

$$\theta_{\text{deg}} = \arctan \frac{S}{D}$$

For some everyday comparisons, one can remember that, at an average arm's length of 57 cm, the horizontal width of the image of your hand is about 10 deg (10°) wide.

At that same arm's length, a quarter coin (2.5 cm wide) *subtends* a visual angle of somewhat over 2 deg (2°). The quarter viewed from 82.5 m, however, subtends only 1 min and, viewed from 4950 m (just over 3 miles), it subtends 1 sec.

The figure below may be used to provide a rough approximation of how different angular sizes appear. Ideally, try to adjust the sizes of the targets on your display, so that each one is physically about the same length *in cm* as its labeled size *in deg*. Then, position your head, so that your eyes are at what is nominally considered a reading distance (40 cm) from the display. The table below the figure will allow you to make a partial correction, if either of the above situations cannot be readily achieved.

Correction for Display Size and Display Distance to Eyes.

Directions: If the 8-degree bar is not equal to 8 cm long, then choose (from the left-most column) the closest value to the actual length of that target on your display. Similarly, if it isn't possible to view targets from the standard 40 cm distance, then choose the vertical column with the closest value to the actual eye-target distance. The value shown in the table is the correction factor for the angular size of each example target.

Just multiply any target's labeled size by its correction factor.

Correction Factors

Actual			if the eyes are positioned at distance X (in cm)				
Length	_	X =	30	35	40	45	50
4	cm		0.67	0.57	0.500	0.44	0.40
5	cm		0.83	0.71	0.625	0.56	0.50
6	cm		1.00	0.86	0.750	0.67	0.60
7	cm		1.17	1.00	0.875	0.78	0.70
8	cm		1.33	1.14	1.000	0.89	0.80
9	cm		1.50	1.29	1.125	1.00	0.90
10	cm		1.67	1.43	1.250	1.11	1.00
11	cm		1.83	1.57	1.375	1.22	1.10
12	cm		2.00	1.71	1.500	1.33	1.20

© Dr. Donald H. Mershon, 2015 All Rights Reserved.

We encourage sharing this content. Our goals include answering questions about, and increasing awareness of, the study of perception. These goals will be furthered if you connect, link to and/or pass on this content.

You may share/quote/disseminate this website in whole or in its component parts in any way you see fit, with the following restrictions:

- P Any commercial use of this content is strictly prohibited, without express written consent of Dr. Donald H. Mershon.
- P Attribution for unaltered content must be made to the content's author. Although most articles will be attributable to Dr. Donald H. Mershon, please check an article's header to note other authors or items having joint authorship.
- **The Content May be modified or adapted for any educational, non-commercial use so long as such changes are properly identified (i.e., "adapted or modified from practical perception.org © Dr. Donald H. Mershon ").**
- P Use of images with separately identified source(s) should credit such sources.
- **qp** Opinions or viewpoints expressed on the practical perception.org website must not be altered in any way that changes the intent of the original author(s).